segunda-feira, 18 de fevereiro de 2019


x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



e seja D o operador condição de contorno
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Seja f(x) uma função contínua em [0,l]. Devemos também supor que o problema
é regular (isto é, só a solução trivial existe para o problema homogêneo).

Teorema[

Há uma e apenas uma solução u(x) que satisfaz
e é dada por
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


onde G(x,s) é uma função de Green que satisfaz as seguintes condições:
  1. G(x,s) é contínua em x e s
  2. Para 
  3. Para 
  4. Descontinuidade na derivada: 
  5. Simetria: G(xs) = G(sx)

Calculando funções de Green[editar | editar código-fonte]

Expansão em autovalores[editar | editar código-fonte]

Se um operador diferencial L admite um conjunto de autovetores  (ou seja, um conjunto de funções  e escalares  tais que ) que são completos, então é possível construir uma função de Green a partir destes autovetores e autovalores.
Completo significa que o conjunto de funções  satisfaz a seguinte relação de completeza:
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Então o seguinte se aplica:
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



onde * representa a conjugação complexa.
Aplicando o operador L nos dois membros desta equação resulta na relação de completeza, que assumimos ser verdadeira.
O estudo geral da função de Green apresentado na forma acima, e sua relação com os espaços de funções formados por autovetores, é conhecido como teoria de Fredholm.

Funções de Green para o Laplaciano

x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Seja  e substitua na lei de Gauss. Calcule  e applique a regra da cadeia para o operador :
Substituindo no teorema da divergência, temos o teorema de Green:
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Suponha que o operador diferencial linear L é o Laplaciano, e que existe uma função de Green G para o Laplaciano. A propriedade que define a função de Green ainda se aplica:
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Seja  no teorema de Green. Então:
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Com esta expressão, é possível resolver a equação de Laplace  ou a equação de Poisson , sob tanto pelas condições de contorno de Neumanncomo pelas condições de contorno de Dirichlet. Em outras palavras, podemos resolver para  em qualquer ponto dentro de um volume onde: (1) o valor de  é especificado na superfície delimitadora do volume (condições de contorno de Dirichlet), ou; (2) a derivada normal de  é especificada na superfície delimitadora (condições de contorno de Neumann).
Suponha que o problema seja resolver para  dentro da região. Então a integral
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


reduz-se simplesmente a , devido à propriedade da definição da função delta de Dirac, e temos:
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Supondo que a superfície limite estenda-se ao infinito e substituindo a função de Green nessa expressão, temos a conhecida expressão do potencial elétrico em termos da densidade de carga (no sistema de unidades CGS):
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Exemplo

Dado o problema

Encontre a função de Green.
Primeiro passo: A função de Green para o operador linear é definida como a solução de
Se , então a função delta é nula, e a solução geral é
Para , a condição de contorno em  implica que
A equação  é ignorada porque  se  e .
Para , a condição de contorno em  implica que
A equação  é ignorada por razões semelhantes.
Resumindo os resultados até então:
Segundo passo: A próxima tarefa é determinar  and .
Garantindo a continuidade da função de Green em , temos que
O operador  equivale ao operador de Sturm-Liouville com  e . Pela condição de descontinuidade da derivada,
, temos
As duas equações (des)contínuas podem ser resolvidas para  e  para obter
Assim a função de Green para este problema é:

Outros exemplos[editar | editar código-fonte]







Em matemática, uma função de Green é um tipo de função utilizada para resolver equações diferenciais não-homogêneas sujeitas a condições iniciais ou condições de contorno determinadas. Na teoria de muitos corpos, essa terminologia também é utilizada na física, especificamente na teoria quântica de camposeletrodinâmica e teoria estatística de campos para se referir a vários tipos de funções de correlação, mesmo aquelas que não se encaixam na definição matemática.
As funções de Green têm esse nome em homenagem ao matemático britânico George Green, que foi o primeiro a desenvolver o conceito na década de 1830. No estudo moderno das equações diferenciais parciais, as funções de Green são estudadas principalmente do ponto de vista das soluções fundamentais.

Uma função de Green, G(xs), de um operador diferencial linear L = L(x), atuando em distribuições de um subconjunto do espaço euclidiano Rn, em um ponto s, é qualquer solução de
onde  é a função delta de Dirac. Esta propriedade de uma função de Green pode ser explorada para resolver equações diferenciais da forma
Se o núcleo de L é não-trivial, então a função de Green não é única. No entanto, na prática, uma combinação de simetriacondições de contorno e/ou outros critérios impostos a priori dará uma função de Green única. Além disso, funções de Green em geral são distribuições, não necessariamente funções próprias.
Funções de Green também são uma ferramenta útil na resolução de equações da onda, equações de difusão e na mecânica quântica, onde a função de Green do hamiltoniano é um conceito chave, com ligações importantes para o conceito de densidade dos estados. À via de nota, a função de Green utilizada na física é geralmente definida com o sinal oposto, isto é,
Esta definição não altera significativamente qualquer uma das propriedades da função de Green.
Se o operador é invariante por translações, o que ocorre quando L tem coeficientes constantes em relação a x, então a função de Green pode ser considerada como um operador de convolução, ou seja,
Neste caso, a função de Green é o mesmo que a resposta ao impulso da teoria de sistemas LTI.

Motivação[editar | editar código-fonte]

Ver também: Teoria espectral
Grosso modo, se tal função G pode ser encontrada para o operador L, então se multiplicarmos a equação (1) pela função de Green por f(s) e em seguida realizarmos uma integração na variável s, obtemos;
O membro direito é agora dado pela equação (2), sendo então igual a L u(x). Assim:
Como o operador L = L(x) é linear e atua sobre a variável x sozinha (e não sobre a variável de integração s), podemos retirar o operador L do sinal de integração no 2º membro, obtendo-se
E isto sugere que
Assim, podemos obter a função u(x) através da função de Green que deve ser obtida da equação (1) e do termo fonte do segundo membro da equação (2). Este processo reside na linearidade do operador L.
Em outras palavras, a solução da equação (2), u(x), pode ser determinada pela integral dada na equação (3). Embora f(x) seja conhecida, esta integração não pode ser realizada, a menos que G seja também conhecida. O problema agora reside em encontrar a função de Green G que satisfaz a equação (1). Por esta razão, a função de Green é chamada também às vezes de solução fundamental associada ao operador L.
Nem todo operador L admite uma função de Green. Uma função de Green também pode ser pensada como sendo um inverso pela direita de L. Além das dificuldades de encontrar-se uma função de Green para um determinado operador, a integral na equação (3) pode ser bastante difícil de se calcular. No entanto, o método fornece um resultado teoricamente exato.
Isto pode ser pensado como uma expansão de f de acordo com uma base de funções delta de Dirac (projetando-se f sobre δ(x − s)) e uma superposição da solução de cada projetor. Tal equação integral é conhecida como equação integral de Fredholm; o seu estudo constitui a teoria de Fredholm.

Funções de Green para a solução de problemas de valores de contorno não-homogêneos[editar | editar código-fonte]

A principal utilização das funções de Green na matemática é a resolução de problemas de valores de contorno não-homogêneos. Na física teórica moderna, as funções de Green são também geralmente utilizadas como propagadores em diagramas de Feynman (e a expressão função de Green é muitas vezes usada para qualquer função de correlação).

Estrutura matemática[editar | editar código-fonte]

Seja L o operador de Sturm-Liouville, um operador diferencial linear da forma
e seja D o operador condição de contorno
Seja f(x) uma função contínua em [0,l]. Devemos também supor que o problema
é regular (isto é, só a solução trivial existe para o problema homogêneo).

Teorema[editar | editar código-fonte]

Há uma e apenas uma solução u(x) que satisfaz
e é dada por
onde G(x,s) é uma função de Green que satisfaz as seguintes condições:
  1. G(x,s) é contínua em x e s
  2. Para 
  3. Para 
  4. Descontinuidade na derivada: 
  5. Simetria: G(xs) = G(sx)

Calculando funções de Green[editar | editar código-fonte]

Expansão em autovalores[editar | editar código-fonte]

Se um operador diferencial L admite um conjunto de autovetores  (ou seja, um conjunto de funções  e escalares  tais que ) que são completos, então é possível construir uma função de Green a partir destes autovetores e autovalores.
Completo significa que o conjunto de funções  satisfaz a seguinte relação de completeza:
Então o seguinte se aplica:
onde * representa a conjugação complexa.
Aplicando o operador L nos dois membros desta equação resulta na relação de completeza, que assumimos ser verdadeira.
O estudo geral da função de Green apresentado na forma acima, e sua relação com os espaços de funções formados por autovetores, é conhecido como teoria de Fredholm.

Funções de Green para o Laplaciano[editar | editar código-fonte]

As funções de Green para os operadores diferenciais lineares envolvendo o Laplaciano podem ser facilmente postas em uso com a segunda das identidades de Green.
Para deduzir o teorema de Green, comece com o teorema da divergência (também conhecido como teorema de Gauss):
Seja  e substitua na lei de Gauss. Calcule  e applique a regra da cadeia para o operador :
Substituindo no teorema da divergência, temos o teorema de Green:
Suponha que o operador diferencial linear L é o Laplaciano, e que existe uma função de Green G para o Laplaciano. A propriedade que define a função de Green ainda se aplica:
Seja  no teorema de Green. Então:
Com esta expressão, é possível resolver a equação de Laplace  ou a equação de Poisson , sob tanto pelas condições de contorno de Neumanncomo pelas condições de contorno de Dirichlet. Em outras palavras, podemos resolver para  em qualquer ponto dentro de um volume onde: (1) o valor de  é especificado na superfície delimitadora do volume (condições de contorno de Dirichlet), ou; (2) a derivada normal de  é especificada na superfície delimitadora (condições de contorno de Neumann).
Suponha que o problema seja resolver para  dentro da região. Então a integral
reduz-se simplesmente a , devido à propriedade da definição da função delta de Dirac, e temos:
Esta fórmula expressa a propriedade bem conhecida das funções harmônicas que se seu valor ou sua derivada normal é conhecida sobre uma superfície delimitadora, então seu valor dentro do volume é conhecido em todos os pontos.
Em eletrostática é interpretada como o potencial elétrico como a densidade de carga elétrica e a derivada normal  como a componente normal do campo elétrico.
Se o problema é resolver um problema de valor de contorno de Dirichlet, a função de Green deve ser escolhida de forma que  se anule quando x ou x' está sobre a superfície delimitadora. Assim, sobra apenas um dos dois termos na integral de superfície. Se o problema é resolver um problema de valor de contorno de Neumann, a função de Green é escolhida de forma que sua derivada normal se anule na superfície delimitadora, já que esta parece ser a escolha mais lógica. (Veja "Eletrodinâmica clássica", J. D. Jackson, página 39).
Sem as condições de contorno, a função de Green para o Laplaciano (função de Green para a equação de Laplace em três dimensões) é:
Supondo que a superfície limite estenda-se ao infinito e substituindo a função de Green nessa expressão, temos a conhecida expressão do potencial elétrico em termos da densidade de carga (no sistema de unidades CGS):

Exemplo[editar | editar código-fonte]

Dado o problema
Encontre a função de Green.
Primeiro passo: A função de Green para o operador linear é definida como a solução de
Se , então a função delta é nula, e a solução geral é
Para , a condição de contorno em  implica que
A equação  é ignorada porque  se  e .
Para , a condição de contorno em  implica que
A equação  é ignorada por razões semelhantes.
Resumindo os resultados até então:
Segundo passo: A próxima tarefa é determinar  and .
Garantindo a continuidade da função de Green em , temos que
O operador  equivale ao operador de Sturm-Liouville com  e . Pela condição de descontinuidade da derivada,
, temos
As duas equações (des)contínuas podem ser resolvidas para  e  para obter
Assim a função de Green para este problema é:

Outros exemplos[editar | editar código-fonte]











Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].